Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 18, 2025
-
Free, publicly-accessible full text available December 1, 2025
-
Metallic charge transport and porosity appear almost mutually exclusive. Whereas metals demand large numbers of free carriers and must have minimal impurities and lattice vibrations to avoid charge scattering, the voids in porous materials limit the carrier concentration, provide ample space for impurities, and create more charge-scattering vibrations due to the size and flexibility of the lattice. No microporous material has been conclusively shown to behave as a metal. Here, we demonstrate that single crystals of the porous metal–organic framework Ln 1.5 (2,3,6,7,10,11-hexaoxytriphenylene) (Ln = La, Nd) are metallic. The materials display the highest room-temperature conductivities of all porous materials, reaching values above 1,000 S/cm. Single crystals of the compounds additionally show clear temperature-deactivated charge transport, a hallmark of a metallic material. Lastly, a structural transition consistent with charge density wave ordering, present only in metals and rare in any materials, provides additional conclusive proof of the metallic nature of the materials. Our results provide an example of a metal with porosity intrinsic to its structure. We anticipate that the combination of porosity and chemical tunability that these materials possess will provide a unique handle toward controlling the unconventional states that lie within them, such as charge density waves that we observed, or perhaps superconductivity.more » « less
-
null (Ed.)Metal–organic frameworks (MOFs) represent one of the most diverse structural classes among solid state materials, yet few of them exhibit aperiodicity, or the existence of long-range order in the absence of translational symmetry. From this apparent conflict, a paradox has emerged: even though aperiodicity frequently arises in materials that contain the same bonding motifs as MOFs, aperiodic structures and MOFs appear to be nearly disjoint classes. In this perspective, we highlight a subset of the known aperiodic coordination polymers, including both incommensurate and quasicrystalline structures. We further comment upon possible reasons for the absence of such structures and propose routes to potentially access aperiodic MOFs.more » « less
An official website of the United States government
